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Motivation

•

 

The LEMan

 

(Low-frequency E/M

 

Wave Propagation) code is a fast 
tool to analyse the propagation of low-frequency waves in 2D and 
3D configurations.

•

 

Low-frequency waves are of great interest in plasma physics 
(destabilisation of global Alfvén

 

modes by fast ions, ICRH, etc…). 
Several codes are dealing with this domain (AORSA, TORIC, 
LIGKA, NOVA-K, PENN, etc…).

•

 

Importance to have kinetic effects => A warm model has been 
implemented (including Landau damping and Kinetic Alfvén

 

Wave 
(KAW))

•

 

Wide ranges of 3D configurations: stellarators, non-axisymetric

 components in tokamak

 

(toroidal

 

ripple, localised antenna, etc…)
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Main considerations

•

 

Low-frequency waves, long wavelengths => spatial variation of 
equilibrium quantities over a wavelength non-negligible => need a 
full-wave formulation

•

 

Geometric effects are important and we want to model 3D 
configurations => 3D code

•

 

LEMan

 

solves Maxwell’s equations:

•

 

The dielectric tensor ε

 

(relating the electric field and the internal 
current) is determined by the physical model
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Wave
 

equation
 

formulation

•

 

Maxwell’s equation can be solved in terms of potentials. The advantage of 
this method is the absence of numerical pollution (resulting from the               
operator):

• 3D plasma equilibrium is computed with the VMEC code.

•

 

The equations are written in the Boozer coordinates (mapped with

 

the 
TERPSICHORE code):

where ψ

 

and φ

 

are resp. the poloidal

 

and toroidal

 

fluxes. All vectors are 
projected onto the local magnetic basis:

Advantages: simple boundary conditions and dielectric tensor form
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Numerical
 

scheme

•

 

The set of equations is solved using the Galerkin

 

weak form method.

•

 

The solution is discretised

 

with finite elements in the radial direction 
and Fourier harmonics in the poloidal

 

and toroidal

 

directions:

•

 

Results in a block tridiagonal

 

linear system. Several parallelisation 
schemes are used depending on the physical model or geometry. 
Computation requires up to 800Gb of memory => shared over all 
nodes.
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Parallelisation

•

 

If the computation of the matrix elements takes more time than the solution 
of the linear system (this is the case with the warm model presented later) 
=> simple parallelisation on magnetic surfaces gives the best scalability

•

 

If the longest time is spent in the solver (warm model with approximation of 
k||) => BABE method + OpenMP

 

are applied
•

 

In axisymetric

 

case, with toroidally

 

localised antenna => parallelisation over 
the toroidal

 

wave number n. 

> Two

 

ion-species

 

scenario 
with

 

a localised

 

antenna
(the antenna

 

is

 

represented

 
in black)
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6-period
 

quasi-isodynamic
 

stellarator

•

 

Stellarator

 

configuration 
with

 

a dominant mirror

 
component => magnetic

 
beach

 

scenario
•

 

1676 Fourier harmonics

 
and 100 radial surfaces 
were

 

required

 

for the 
computation (~300Gb)
• Cold model

Intensity

 

of
the B field

Eb

D cyclotron
resonance

HFS

LFS

LFS
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Warm model

•

 

Vlasov

 

equation:

•

 

Linearization:

•

 

Neglecting terms of order higher than 0 in the Finite Larmor

 

Radius 
(FLR) expansion:

•

 

F is taken as a Maxwellian

 

(~exp(-v2/vth
2))

•

 

The warm dielectric tensor is obtained after integration of the 
perturbed distribution function:
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Warm model in cylindrical
 

geometry

•

 

Fourier transform

 

in time and Fourier decomposition

 

for the gyro-

 angle α:

•

 

k||

 

do not vary

 

on a magnetic

 

surface:

•

 

After

 

integration

 

over the velocity, we

 

obtain

 

the dielectric

 

tensor:
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Warm model in axisymetric
 

geometry

•

 

Same

 

as used

 

in the PENN code (Brunner, Vaclavik

 

1993)
•

 

Axisymmetry

 

allows

 

to decompose

 

the perturbed

 

part of the 
distribution function

 

in a Fourier series

 

along

 

the toroidal

 

direction:

•

 

If the m (poloidal

 

mode number) of k|| is

 

neglected, the same

 
formulation as for the cylindrical

 

case can

 

be

 

used:

•

 

Integration

 

leads

 

to the same

 

kind

 

of solution as before.
•

 

For example:

or                inside

 

the Δm=1 gap.
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Issues with
 

k||

 

approximation 

•

 

Hard to make a good approximation in a 3D configuration due to the 
absence of a simple symmetry as in a tokamak.

•

 

Significant dependence of the wavefield

 

on the approximation used 
for the parallel wave vector. For example:

=> A method is needed to keep the exact form of k||

 

. 

k|| = n/R k|| = 1/(2qR)
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Warm model: general
 

case (1)

•

 

In order to keep the full expression for k||

 

, a Fourier decomposition is 
performed in both the poloidal

 

and toroidal

 

directions:

•

 

After multiplication by a test function g(θ,ϕ), the linearised

 

Vlasov

 equation becomes:

•

 

Integration over θ

 

and ϕ

 

leads to the linear system             :
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Warm model: general
 

case (2)

•

 

In matrix form:

where:

•

 

We have to take into account the dependence of the matrix on v||

 

in 
order to perform the integration over velocity space. The solution is 
written as a rational function of v||

 

:

•

 

Partial fraction decomposition into a sum of terms each having the 
same form as in the cylindrical or approximated axisymmetric

 

cases.
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Warm model: convolution

•

 

The dielectric tensor is no longer expressed in real space as it

 

was in the 
cold formulation but is now linking the Fourier components of the electric 
field and current. Each element now has the following form:

where                          is the complex error function.

•

 

In order to be able to use mathematical libraries, the integration of the 
dielectric tensor in the linear system is done with two successive matrix 
multiplications. 
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Convergence (radial elements)

•

 

LHD case with

 

B0

 

= 0.8T, n0

 

= 4.0e19m-3, f = 51.7 kHz, fixed

 

Nm

 

= 139

Coulomb Gauge:                                                 Local and global power balance:

R
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Warm model in solid
Cold convolution in dashed

• Cold convolution in solid
• Simple Fourier decomposition

 

in dashed

Warm vs cold
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Convergence (Fourier harmonics)

•

 

LHD case with

 

B0

 

= 0.8T, n0

 

= 4.0e19m-3, f = 51.7 kHz, fixed

 

NS

 

= 100

Coulomb Gauge:                                                 Local and global power balance:

Warm model in solid
Cold convolution in dashed

• Cold convolution in solid
• Simple Fourier decomposition

 

in dashed
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Comparison
 

of different
 

models

•

 

JET-like

 

equilibrium

 

(n0

 

=3.2e19m-3, B0

 

=3.4T, Antenna: (m,n) = (-1,1))

•

 

All the models

 

give

 

almost

 

the same

 

value for the TAE frequency

 

but 
the damping

 

of this

 

global mode is

 

different.
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Toroidal
 

helix: cold and warm models

Frequency

 

[kHz]
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•

 

Comparison

 

between

 

cold and warm scan of a helical

 

configuration 
with

 

aspect ratio 7. n0

 

= 4.0e19 m-3, T0

 

= 500 eV, B0

 

= 0.8 T.

Cold

Warm

HAE
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Large Helical
 

Device
 

(LHD)

Parameters: 
•n0

 

= 4.0e19 m-3

•T0

 

= 500 eV
•B0

 

= 0.8 T
•H plasma

f [kHz]
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JET ICRH case

•

 

Ion-ion hybrid

 

resonance

 

scenario (70% D, 30% H, n0

 

=3.2e19m-3, B0

 

=3.4T), k||

 

=n/R

•

 

The same

 

phenomena

 

as in the previous

 

cold model computations are recovered. 
Absorbtion

 

at

 

the resonance

 

(HFS), reflection

 

at

 

the cut-off (LFS).
•

 

The only

 

difference

 

is

 

the absoption

 

at

 

the H species

 

cyclotron resonance

Ppla Ppla

En En
Ion-ion hybrid resonance

H cyclotron resonance

HFS
Antenna

LFS
Antenna
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Why
 

another
 

method
 

for ICRH?

•

 

Convolution method inappropriate when the resonance is crossing 
the magnetic surfaces (gives oscillations)

•

 

Hard exercise to invert a polynomial matrix where diagonal elements 
are smaller than off-diagonal ones

•

 

Poor scaling between number of Fourier harmonics and time of 
computation (good for a few modes but really problematic when it

 increases)

=> Solution: determine a sufficiently accurate value of the parallel wave 
vector that depends only on spatial parameters.
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The iterative
 

method

•

 

Take

 

an initial guess

 

for k||

 

.
•

 

After

 

a run, the wavefield

 

is

 

the obtained.
•

 

In the Alfvén

 

domain, the kinetic

 

effects

 

on propagation are 
essentially

 

determined

 

by ε|| ||

 

, we

 

concentrate

 

on E||

 

.
•

 

E||

 

is

 

inserted

 

inside

 

the equation

 

already

 

presented

 

for the 
convolution model:

•

 

f0

 

is

 

obtained

 

=> k||

 

(v||

 

)
•

 

To obtain

 

a k||

 

that

 

does

 

not depend

 

on v||

 

, we

 

take

 

it

 

relative to j||

 

:
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Iterative
 

vs convolution

•

 

Good agreement between

 

the two

 

methods

 

in the Alfvén

 

domain

JET-like

 

equilibirium

 

Straight helix
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= 3.2x1019
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= 3.4 T,
Te

 

= Ti
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* (1-s)
n0

 

= 4.0x1019

 

m-3, B0

 

= 0.8 T,
Te

 

= Ti

 

= 1.0 keV
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Iterative
 

method
 

vs approximations

•

 

Results

 

for a circular

 

cross section torus with

 

convolution model vs…

… iterative

 

method

 

… several

 

approximations
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= 4.0x1019

 

m-3, B0

 

= 0.8 T, Te

 

= Ti

 

= 1.0 keV
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ICRH with
 

the iterative
 

method

• The parallel wave vector is computed here relatively to the 
fundamental component of the distribution function f1

 

(with ω-Ω):

• Simulation in a JET-like configuration (after 10 iterations):
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Bi-Mawellian
 

distribution function

•

 

In order

 

to model fast

 

ions population => a dielectric

 

tensor

 

based

 on a non-Maxwellian

 

distribution function

 

has to be

 

included

 

in the 
code

•

 

A bi-Mawellian

 

can

 

play

 

such

 

a role:
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Dielectric
 

tensor
 

based
 

on a bi-Maxwellian
 

(1)

•

 

After

 

integration

 

and taking

 

account

 

of the absolute

 

value, we

 

obtain:
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Dielectric
 

tensor
 

based
 

on a bi-Maxwellian
 

(2)

•

 

Component εnn

 

of the dielectric

 

tensor

 

of a plasma composed

 

of 
deuterium

 

and 1% of…

…thermal hydrogen

 

…fast

 

H with

 

T┴

 

/T||

 

=1     …fast

 

H with

 

T┴

 

/T||

 

=10
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Test of integrated
 

modeling

LEMan VENUS (Guiding

 

center
particle

 

code)
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Conclusions

•

 

The convolution formulation for a consistent k||

 

gives good results for both 
2D and 3D configurations in the Alfvén

 

domain. Nevertheless computation 
is problematic in ICRF range.

•

 

A new iterative method has thus been implemented in order to be able to 
avoid the problem caused by the inversion of a polynomial matrix. 
Comparisons have been performed against the previous method, giving a 
good agreement. A first case has been computed in the ICRF domain.

•

 

A first result from integrated modelling of wave absorption and heating has 
been obtained. It couples an

 

anisotropic version of the VMEC 3D 
equilibrium code with the LEMan code

 

to determine the location and 
magnitude of heat deposition and then with VENUS

 

guiding centre particle 
code to calculate the hot particle response

 

that is

 

fitted with the pressure 
moments of the Bi-Maxwellian

 

distribution function. The

 

aim is to iteratively 
obtain an equilibrium state that is fully self-consistent with

 

the applied 
heating.
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Toroidal
 

helix: different
 

aspect ratios

•

 

Comparison

 

between

 

helix

 

cases with

 

aspect ratios 140, 14 and 7.
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Convergence

•

 

Circular

 

cross section torus with

 

aspect ratio 5

Coulomb Gauge:

Local and global power balance:

Warm in solid
Cold in dashed
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Future work

•

 

A bimaxwellian

 

distribution function

 

will

 

be

 

added

 

in the order

 

to 
include

 

the effect

 

of fast

 

ions on the computed

 

wavefield. A coupling

 with

 

a particle

 

simulation δf

 

code (VENUS) will

 

permit to study

 behaviour

 

of the particles

 

in the case of global modes or ICRH.

•

 

The method

 

has to be

 

improved

 

to allow

 

computation of ICRH cases 
with

 

the full model.

•

 

Other

 

benchmarks have also

 

to be

 

performed

 

in order

 

to verify

 

the 
veracity

 

of the results

 

obtained

 

with

 

LEMan.
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