Warm simulations of low-frequency wave
propagation in three-dimensional plasmas

PPPL, Princeton, November 26t, 2008

N. Mellet, W.A. Cooper, M. Jucker, J.P Graves and L. Villard
CRPP, EPFL, Association EURATOM - Confédération Suisse, Switzerland

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Euratom - Confédération Suisse



Motivation

+

« The LEMan (Low-frequency E/M Wave Propagation) code is a fast
tool to analyse the propagation of low-frequency waves in 2D and
3D configurations.

« Low-frequency waves are of great interest in plasma physics
(destabilisation of global Alfvén modes by fast ions, ICRH, etc...).
Several codes are dealing with this domain (AORSA, TORIC,
LIGKA, NOVA-K, PENN, etc...).

* Importance to have kinetic effects => A warm model has been
implemented (including Landau damping and Kinetic Alfvén Wave
(KAW))

« Wide ranges of 3D configurations: stellarators, non-axisymetric
components in tokamak (toroidal ripple, localised antenna, etc...)
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Main considerations

4>

« Low-frequency waves, long wavelengths => spatial variation of
equilibrium quantities over a wavelength non-negligible => need a
full-wave formulation

« Geometric effects are important and we want to model 3D
configurations => 3D code

 LEMan solves Maxwell's equations:

vxvxE—kgé-E:ikO“—”th
C

« The dielectric tensor ¢ (relating the electric field and the internal
current) is determined by the physical model
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Wave equation formulation

« Maxwell’s equation can be solved in terms of potentials. The advantage of
this method is the absence of numerical pollution (resulting from the V xV x

operator): .
éIVXA _ V2A+k§§°A+ikoé'V¢:_4—ﬂiext
" ~_and V-A=0 = ; ¢
E=—Vg+ik,A V- (8-V@)—ik,V- (- A) =4,

o 3D plasma equilibrium is computed with the VMEC code.

« The equations are written in the Boozer coordinates (mapped with the
TERPSICHORE code):
B,=VoxVy+VgxVe,

where y and ¢ are resp. the poloidal and toroidal fluxes. All vectors are

prOJected onto the local magnetic basis: _ 5
—~ Vs B, xVs
A=A =Tt A

vy B A B,

Advantages: simple boundary conditions and dielectric tensor form
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Numerical scheme

+

« The set of equations is solved using the Galerkin weak form method.

« The solution is discretised with finite elements in the radial direction
and Fourier harmonics in the poloidal and toroidal directions:

f(5,0,0)= > ™y (s)e"0"
« Results in a block tridiagonal liRear system. Several parallelisation

schemes are used depending on the physical model or geometry.
Computation requires up to 800Gb of memory => shared over all
nodes.
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Parallelisation

« If the computation of the matrix elements takes more time than the solution
of the linear system (this is the case with the warm model presented later)
=> simple parallelisation on magnetic surfaces gives the best scalability

» If the longest time is spent in the solver (warm model with approximation of
k||) => BABE method + OpenMP are applied

* In axisymetric case, with toroidally localised antenna => parallelisation over
the toroidal wave number n.

> Two ion-species scenario
with a localised antenna
(the antenna is represented
in black)

|
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6-period quasi-isodynamic stellarator

e

Intensity of
the B field

E,

« Stellarator configuration
with a dominant mirror
component => magnetic
beach scenario

* 1676 Fourier harmonics
and 100 radial surfaces
were required for the
computation (~300Gb)

16 » Cold model
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Warm model

Vlasov equation:

ﬂ+\7 —+— d [E+v><B] af

ot OX m

 Linearization: _-
g, ag o q[ﬁ+v><B]aF 0
ot OX m av m oV

* Neglecting terms of order higher than 0 in the Finite Larmor Radius
(FLR) expansion: _ .
Pwnv” +Q£Jf _9E F _AEW)
ot ox m ov

« Fis taken as a Maxwellian (~exp(-v3/vy,?))

« The warm dielectric tensor is obtained after integration of the
perturbed distribution function:

—

j:qu(\7)\7d3v
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Warm model in cylindrical geometry

« Fourier transform in time and Fourier decomposition for the gyro-
angle o

f(t):ij f(2)e " *da =3 el

|=—c0
= [He+iky, +ilQ]f, = A(E,V)
* kj do not vary on a magnetic surface:
_IA(E W)
kv, - 1Q

« After integration over the velocity, we obtain the dielectric tensor:

1 =~ = i o~ = , =
=g, =1-—(Z,+Z £, =—& =—— (2,7 gy =1+—— (o —aiZ,)
€ = €np 2ZU( 1 +Z,) b b 2w( 1 —Z) I (k)2 P 0
~ wz . e Z +00 1 32
En) = Ejn = &g = Epp =0 2 =—=-7(z) with z =T ZSh(z)zﬁj e dx

\k”\vth —0 7 — X
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Warm model in axisymetric geometry

« Same as used in the PENN code (Brunner, Vaclavik 1993)

« Axisymmetry allows to decompose the perturbed part of the
distribution function in a Fourier series along the toroidal direction:

fi(p)= D f,.e™

* Ifthe m (poloidal mode number) of k; is neglected, the same
formulation as for the cylindrical case can be used:

¢ iA(E,V)
" @k (n,6)v, - 1Q(6)

* Integration leads to the same kind of solution as before.

« For example: _j
p k”: I £¢’ 0 +V£J:1(n+m]zﬂ
ByAg\ dp " 00) rU q) r

1
or K :Zq—R inside the Am=1 gap.
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4>

« Hard to make a good approximation in a 3D configuration due to the
absence of a simple symmetry as in a tokamak.

« Significant dependence of the wavefield on the approximation used
for the parallel wave vector. For example:

Issues with k, approximation

k, =n/R k, = 1/(2qR)

—¥%

PENN

LEMan

KAW in a tokamak with circular cross section.f = 118kHz, n = 1, n, = 2.2e19m3, B, = 2.0T, D plasma.

=> A method is needed to keep the exact form of K-
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Warm model: general case (1)

* Inorder to keep the full expression for k;, a Fourier decomposition is
performed in both the poloidal and toroidal directions:
f (0’ ¢) — f: fmnei(m0+n(p) E(@, (D) — i Emln'ei(m‘9+n'(p)

m,N=—o0 m',n'=—co

« After multiplication by a test function g(0,¢), the linearised Vlasov
equation becomes:

—|Z{w_f y'm+e n)+IQ} e G o = Z ! O E

_.

iy
m'n' av

* Integration over 6 and ¢ leads to the linear system Lf = r
(S) — _|(47Z. @ — ICr$11)m ,n—n' (l// m+¢ n)Cr(nZ)m ,n—-n' ||)

mm ‘nn’

- B(6,0) _inox 2 i(10+k
with CO = [dadp 122 gitorio) c® - [dadg 0i(10+k0)
V= m - \/g(e,go)B(e, )

81: v P —i(m'G+n'
Vo = jdéﬂ(ﬁ(— I'T?Vj 8\3 |: 2L [En (5I,1 +5I,—1)+ IEb (5I,—1 _5I,1)]+V||E||5I,O:|e o)
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Warm model: general case (2)

 |n matrix form:

a; + b11V|| a;, + b12V|| a1p + blpV|| .
where:
L 8y +hyVy 8y +hyy
= . o 2 @)
a(m,n)(m',n') - _|(47Z- w — ICm m',n— n)
apl + bplv|| app + bppV”— b(m,n)(m',n') = I[(l//l m + ¢l n)Cr;Z—)m',n—n']

+ We have to take into account the dependence of the matrix on v, in
order to perform the integration over velocity space. The solution is
written as a rational function of v/:

ZC.VH Zp: g
Zdjv” N

« Partial fraction decomposmon into a sum of terms each having the
same form as in the cylindrical or approximated axisymmetric cases.

f

26.11.2008 13/30



()
(@b Warm model: convolution
The dielectric tensor is no longer expressed in real space as it was in the

cold formulation but is now linking the Fourier components of the electric
field and current. Each element now has the following form:

L <
~ 7V, h v, — X Vi,

where w(z) =eerfc(-iz) is the complex error function.

Z giW(hi /Vth)

In order to be able to use mathematical libraries, the integration of the
dielectric tensor in the linear system is done with two successive matrix
multiplications.
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Convergence (radial elements)

* LHD case with B, = 0.8T, n, = 4.0e19m=3, f = 51.7 kHz, fixed N, = 139
Coulomb Gauge: 9, =MV-A‘
1 =2 Zx e = '

é‘l :J-O‘Pplasma (S) ant (S) Poynt (S)‘dS/ Pplasma( ) plasma(s) a_ j OB‘ -E (EE)) dv

V(s <s)
59 = (Pplasma (l) ant (1))/ I:)plasma( ) ant (S) _E j(
V (s'<s) .
@ Warmvscold Lonvolution vs simple Fourier
UL O
o 2 S 2
= 10 = 10
o o
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- | =
© -4_ © -4_
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o \N‘ 3 2
g
B -6
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Warm model in solid  Cold convolution in solid
Cold convolution in dashed » Simple Fourier decomposition in dashed
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Convergence (Fourier harmonics)

« LHD case with B; = 0.8T, n, = 4.0e19m=3, f = 51.7 kHz, fixed Ng = 100
Coulomb Gauge: &, =L‘V-A‘dv
1 512 2 e = '

5= [} P (5) — Pas(8) = Sy ()]s Pp.asma( ) Pum®=5 | (\B\ ~EE) v

V(s <s)
59 = (Pplasma (l) ant (1))/ Pplasma( ) ant (S) _ E J‘(
V (s'<s)
; Warm vs cold Convolution vs simple Fourier
10 ; : : _ | | |
2 Hh\h“““‘“‘““‘-—"nunnniiin. 10
10 |

Relative error
o,
o
«
Relative error

10, 100 200 300 400 500 0 100 200 300 400 500
Nm Nm
Warm model in solid » Cold convolution in solid
Cold convolution in dashed » Simple Fourier decomposition in dashed
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Comparison of different models

« JET-like equilibrium (n,=3.2e19m-3, B;=3.4T, Antenna: (m,n) = (-1,1))

=n/R

| gap (2.0) /
k= 1/(2aR) Y,
N
I ______________________________________________________
=,
>
c
£ gap (1,0)
o
O
o
LL
~
__________________________________________________ N4
0.2 0.4 06 08 1

Radial coordinate s

Plasma Response [a.u.]

« All the models give almost the same value for the TAE frequency but
the damping of this global mode is different.
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Toroidal helix: cold and warm models

« Comparison between cold and warm scan of a helical configuration
with aspect ratio 7. n, = 4.0e19 m=, T, =500 eV, B,=0.8 T.

Plasma Response [a.u.]

10° ;

—
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- Y | |
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Frequency [kHZz]
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Large Helical Device (LHD)

o

10
. — cold
S - warm
Parameters: S
ny=40e19m3 2 V
o
T, = 500 eV > A
‘B,=08T T 1o Intensity of
. o the B field
H plasma %
o

Normalised AII
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JET ICRH case

 lon-ion hybrid resonance scenario (70% D, 30% H, n,=3.2e19m3, B,=3.4T), k,=n/R

En En
lon-ion hybrid resonance
H cyclotron resonance ) h ‘
f /
HFS LFS
Antenna Antenna

\

) - -4

P P

pla pla

 The same phenomena as in the previous cold model computations are recovered.
Absorbtion at the resonance (HFS), reflection at the cut-off (LFS).

« The only difference is the absoption at the H species cyclotron resonance
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Why another method for ICRH?

« Convolution method inappropriate when the resonance is crossing
the magnetic surfaces (gives oscillations)

« Hard exercise to invert a polynomial matrix where diagonal elements
are smaller than off-diagonal ones

« Poor scaling between number of Fourier harmonics and time of
computation (good for a few modes but really problematic when it
increases)

=> Solution: determine a sufficiently accurate value of the parallel wave
vector that depends only on spatial parameters.
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* Take an initial guess for k.

The iterative method

o After a run, the wavefield is the obtained.

* In the Alfvén domain, the kinetic effects on propagation are

essentially determined by ¢, ,, we concentrate on E|,.

 E, is inserted inside the equation already presented for the

convolution model:

Ay + b11V|| A, + b12V||
8y + b21V|| 8y + b22V||

Ay + DY)

fo is obtained => k(v )

a, +b,v,

&, + BV

an.

m 8v”

Ker Jj = Ker I fo(v v d*v = I et To(Vy)vyd’v = ,[ v fo(vvdv = kg

E||1
E||2

E

L llp

To obtain a k; that does not depend on v, we take it relative to j:

B j k||_(V||)fo("n)"ndg"

J fo (v
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Ilterative vs convolution

« Good agreement between the two methods in the Alfvén domain

JET-like equilibirium

Straight helix

=3.2x10"" m3,B,=3.4T, ny=4.0x10""m=3,B,=0.8T,
T T-10keV (1-s) T.,=T,=1.0keV
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Iterative method vs approximations

« Results for a circular cross section torus with convolution model vs...

... iterative method ... several approximations
— _
|
. | | =
S, 1072} SR
2 / \\/ ) 2
C ,3/ C
) - o
a 7 @
¥ 107 / &
e | :
% f & —— Convolution
k =n/R
& . ol x - k"—:f(z R)
107 —— Convolution || = H=q
| | | | Iterative | | | | k|l|=‘""CA
10 20 30 40 50 60 10 20 30 40 50 60
Frequency [kHZz] Frequency [kHZz]

Parameters: n, =4.0x10""m3,B,=0.8 T, T_=T,= 1.0 keV
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|ICRH with the iterative method

4>

* The parallel wave vector is computed here relatively to the
fundamental component of the distribution function f, (with »-Q):
q oF N ky(v,) f(v v, dv

. . Vv
Lf, =—— E, +iE = | =2 f(v)dv = k,=
1 m 5VL( b) Jn,1 ,[ 2 1( ||) eff J fl(V”)VLdBV

e Simulation in a JET-like configuration (after 10 iterations):

n pla

K E P

26.11.2008 25/30




Bi-Mawellian distribution function

* |n order to model fast ions population => a dielectric tensor based
on a non-Maxwellian distribution function has to be included in the
code

« A bi-Mawellian can play such a role:

_ m, " _ HBc ‘g_ﬂBC‘
soen-nofy | e a5

B./B=1.3 |
TUT, =42 4 =
T./T,=20 i
o =0.1
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Dielectric tensor based on a bi-Maxwellian (1)

4>

« After integration and taking account of the absolute value, we obtain:

B<Bo 6,6, 1, V(@ 7) 2 (o

Zm(" & e

& :1+Zs:(k|\’2|th)2 T(w 7o) C. =%°i%(1—%

B>B.: 5,=¢,-=1 levZS: \/THTCH ||) CL Zl)J 5;:CI;l:ln({%)
&y =—Ex = 2i Z \/TIIT(M ||) C, C Ci 7 )J

, —1+Z(k { z") €. +C Be [ BCB_Baj—wZ;H
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Dielectric tensor based on a bi-Maxwellian (2)

+

« Component ¢, of the dielectric tensor of a plasma composed of
deuterium and 1% of...

...thermal hydrogen  ...fast H with T,/T,=1 ...fast H with T./T =10
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Test of integrated modeling

0.5
E .
N

-0.5]

VENUS (Guiding center

LEM
an particle code)

r[m]

ANISOTROPIC  T[m]
VMEC

hot

Initial S " after 1 step
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Conclusions

* The convolution formulation for a consistent k; gives good results for both
2D and 3D configurations in the Alfvén domain. Nevertheless computation
is problematic in ICRF range.

* A new iterative method has thus been implemented in order to be able to
avoid the problem caused by the inversion of a polynomial matrix.
Comparisons have been performed against the previous method, giving a
good agreement. A first case has been computed in the ICRF domain.

« Afirst result from integrated modelling of wave absorption and heating has
been obtained. It couples an anisotropic version of the VMEC 3D
equilibrium code with the LEMan code to determine the location and
magnitude of heat deposition and then with VENUS guiding centre particle
code to calculate the hot particle response that is fitted with the pressure
moments of the Bi-Maxwellian distribution function. The aim is to iteratively
obtain an equilibrium state that is fully self-consistent with the applied
heating.
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Toroidal helix: different aspect ratios

« Comparison between helix cases with aspect ratios 140, 14 and 7.

j\/\’J‘A Aspect ratio 140
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© 10 : ! !
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g 10
o
* Aspect ratio 7
21 1
10 E ! ! I E

70 80 90 100 110 120

Frequency [kHZz]
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Convergence

» Circular cross section torus with aspect ratio 5
Coulomb Gauge: 9y =MV-A‘dV Vi3 MA‘dV

Local and global power balance:
1 ) 2 = L =
5I = IO ‘ I:)plasma (s)— - (s)— Poynt (S)‘dS/ I:)plasma( ) Potasa (8)=2— I UB‘ -E (& E)) v’

8 V (s'<s)
5g = (Pplasma (1) o Pant (l))/ I:)plasma (1) ant (S) - E J.( ) v’
V (s'<s)
10 1DD
2 | . o
‘é < d 107 ‘I\ oF
U’j 0™
_fzj O L Warm in solid
% 107 1 J, Cold in dashed
DC i 2 M 10 6 a:
3 \ 3
W 10"
10’ 10° 10° 0 5 10 13 20 pL 30

# of radial surfaces Ng # of Fourier harmonics N,
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Future work

4>

« A bimaxwellian distribution function will be added in the order to
include the effect of fast ions on the computed wavefield. A coupling
with a particle simulation &f code (VENUS) will permit to study
behaviour of the particles in the case of global modes or ICRH.

 The method has to be improved to allow computation of ICRH cases
with the full model.

« Other benchmarks have also to be performed in order to verify the
veracity of the results obtained with LEMan.
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